PES's ModernCollege of Engineering , Pune

Department: - Mechanical Course Title: Solid Mechanics Course Outcomes (CO):

Course	Statement
outcome (CO)	At the end of the course, student will be able to
CO1	DEFINE various types of stresses and strain developed on determinate and
	indeterminate members.
CO2	DRAW Shear force and bending moment diagram for various types of transverse
	loading and support.
CO3	COMPUTE the slope & deflection, bending stresses and shear stresses on a
	beam.
CO4	CALCULATE torsional shear stress in shaft and buckling on the column.
CO5	APPLY the concept of principal stresses and theories of failure to determine
	stresses on a 2-D element.
CO6	UTILIZE the concepts of SFD & BMD, torsion and principal stresses to solve
	combined loading application based problems

Department: Mechanical

Course Title: Solid Modeling and Drafting

Course Outcomes (CO):

Course	Statement
outcome (CO)	At the end of the course, student will be able to
CO1	UNDERSTAND basic concepts of CAD system, need and scope in Product Lifecycle Management.
CO2	UTILIZE knowledge of curves and surfacing features and methods to create complex solid geometry
CO3	CONSTRUCT solid models, assemblies using various modeling techniques & PERFORM mass property analysis, including creating and using a coordinate system
CO4	APPLY geometric transformations to simple 2D geometries
CO5	USE CAD model data for various CAD based engineering applications viz. production drawings, 3D printing, FEA, CFD, MBD, CAE, CAM, etc.
CO6	USE PMI & MBD approach for communication

Department: Mechanical

Year :SE Sem 1 2019 pattern

Course Title: Engineering Thermodynamics Course Outcomes (CO):

Course	Statement
outcome (CO)	At the end of the course, student will be able to
CO1	DESCRIBE the basics of thermodynamics with heat and work interactions.
CO2	APPLY laws of thermodynamics to steady flow and non-flow processes.
<u> </u>	APPLY entropy, available and non available energy for an Open and Closed
005	System.
CO4	DETERMINE the properties of steam and their effect on performance of vapour
	power cycle.
CO5	ANALYSE the fuel combustion process and products of combustion.
CO6	SELECT various instrumentations required for safe and efficient operation of
	steam generator.

Year : SE Sem 1 2019 Pattern

Year :SE Sem 1 2019 pattern

Department: Mechanical

Course Title: Engineering Materials and Metallurgy Course Outcomes (CO):

Statement Course outcome (CO) At the end of the course, student will be able to CO1 **COMPARE** crystal structures and ASSESS different lattice parameters. **CORRELATE** crystal structures and imperfections in crystals with mechanical CO2 behaviour of materials. **DIFFERENTIATE** and **DETERMINE** mechanical properties using destructive CO3 and non-destructive testing of materials. **IDENTIFY & ESTIMATE** different parameters of the system viz., phases, CO4 variables, component, grains, grain boundary, and degree of freedom. etc. **ANALYSE** effect of alloying element & heat treatment on properties of ferrous CO5 & nonferrous alloy. CO6 **SELECT** appropriate materials for various applications.

Department: Mechanical

Course Title: Electrical and Electronics Engineering Course Outcomes (CO):

Course	Statement
outcome (CO)	At the end of the course, student will be able to
CO1	APPLY programming concepts to UNDERSTAND role of Microprocessor and
	Microcontroller in embedded systems
<u> </u>	DEVELOP interfacing of different types of sensors and other hardware devices
02	with Atmega328 based Arduino Board
CO 2	UNDERSTAND the operation of DC motor, its speed control methods and
CO3	braking
CO4	DISTINGUISH between types of three phase induction motor and its
	characteristic features
CO5	EXPLAIN about emerging technology of Electric Vehicle (EV) and its
	modular subsystems
006	CHOOSE energy storage devices and electrical drives for EVs

Department: Mechanical

Year :SE Sem 1 2019 pattern

Course Title: Geometric Dimensioning and Tolerancing Lab Course Outcomes (CO):

Course	Statement
outcome (CO)	At the end of the course, student will be able to
CO1	SELECT appropriate IS and ASME standards for drawing
CO2	READ & ANALYSE variety of industrial drawings
CO3	APPLY geometric and dimensional tolerance, surface finish symbols in
	drawing
CO4	EVALUATE dimensional tolerance based on type of fit, etc.
CO5	SELECT an appropriate manufacturing process using DFM, DFA, etc.

Year :SE Sem 1 2019 pattern

Year :SE Sem 1 2019 pattern

Department: - Mechanical Course Title: Engineering Mathematics - III Course Outcomes (CO):

Year : SE Sem 2 2019 Pattern

Course	Statement
outcome (CO)	At the end of the course, student will be able to
CO1	SOLVE higher order linear differential equations and its applications to model
	and analyze mass spring systems.
CO2	APPLY Integral transform techniques such as Laplace transform and Fourier
	transform to solve differential equations involved in vibration theory, heat
	transfer and related mechanical engineering applications.
CO3	APPLY Statistical methods like correlation, regression in analyzing and
	interpreting experimental data applicable to reliability engineering and
	probability theory in testing and quality control.
CO4	PERFORM Vector differentiation & integration, analyze the vector fields and
	APPLY to fluid flow problems.
CO5	SOLVE Partial differential equations such as wave equation, one and two
	dimensional heat flow equations.

Department: Mechanical

Course Title: Kinematics of Machinery Course Outcomes (CO):

Course	Statement
outcome (CO)	At the end of the course, student will be able to
CO1	APPLY kinematic analysis to simple mechanisms
CO2	ANALYZE velocity and acceleration in mechanisms by vector and graphical
	method
CO3	SYNTHESIZE a four bar mechanism with analytical and graphical methods
CO4	APPLY fundamentals of gear theory as a prerequisite for gear design
CO5	CONSTRUCT cam profile for given follower motion

Department: Mechanical Course Title: Applied Thermodynamics Course Outcomes (CO):

Year :SE Sem 2 2019 pattern

Statement Course outcome (CO) At the end of the course, student will be able to DETERMINE COP of refrigeration system and ANALYZE psychrometric CO1 processes. CO2 **DISCUSS** basics of engine terminology,air standard, fuel air and actual cycles. CO3 **IDENTIFY** factors affecting the combustion performance of SI and CI engines. CO4 **DETERMINE** performance parameters of IC Engines and emission control. CO5 **EXPLAIN** working of various IC Engine systems and use of alternative fuels. **CALCULATE** performance of single and multi stage reciprocating compressors CO6 and **DISCUSS** rotary positive displacement compressors

Year :SE Sem 2 2019 pattern

Department: Mechanical Course Title: Fluid Mechanics Course Outcomes (CO):

Course	Statement
outcome (CO)	At the end of the course, student will be able to
CO1	DETERMINE various properties of fluid
CO2	APPLY the laws of fluid statics and concepts of buoyancy
CO3	IDENTIFY types of fluid flow and terms associated in fluid kinematics
CO4	APPLY principles of fluid dynamics to laminar flow
CO5	ESTIMATE friction and minor losses in internal flows and DETERMINE
	boundary layer formation over an external surface
<u> </u>	CONSTRUCT mathematical correlation considering dimensionless parameters,
000	also ABLE to predict the performance of prototype using model laws

Department: Mechanical Course Title: Manufacturing Processes Course Outcomes (CO):

Course Statement outcome (CO) At the end of the course, student will be able to **SELECT** appropriate moulding, core making and melting practice and estimate pouring time, solidification rate and DESIGN riser size and location for sand CO1 casting process CO2 load required for flat rolling CO3 **DESIGN** dies and tools for forming and shearing operations CO4 welding characteristics CO5 processing techniques

UNDERSTAND mechanism of metal forming techniques and CALCULATE **DEMONSTRATE** press working operations and APPLY the basic principles to **CLASSIFY** and **EXPLAIN** different welding processes and **EVALUATE DIFFERENTIATE** thermoplastics and thermosetting and EXPLAIN polymer

UNDERSTAND the principle of manufacturing of fibre-reinforce composites CO6 and metal matrix composites

Year :SE Sem 2 2019 pattern

Year :SE Sem 2 2019 pattern

PES's ModernCollege of Engineering , Pune

Department: Mechanical Course Title: Machine Shop Course Outcomes (CO):

Year :SE Sem 2 2019 pattern

Course	Statement
outcome (CO)	At the end of the course, student will be able to
CO1	PERFORM welding using TIG/ MIG/ Resistance/Gas welding technique
CO2	MAKE Fibre-reinforced Composites by hand lay-up process or spray lay-up
	techniques
CO3	PERFORM cylindrical/surface grinding operation and CALCULATE its
	machining time
CO4	DETERMINE number of indexing movements required and acquire skills to
	PRODUCE a spur gear on a horizontal milling machine
CO5	PREPARE industry visit report
CO6	UNDERSTAND procedure of plastic processing

Department: - Mechanical Course Title: Numerical and Statistical Methods Course Outcomes (CO): Year : TE Sem 1 2019 Pattern

Course	Statement
outcome (CO)	At the end of the course, student will be able to
CO1	SOLVE system of equations using direct and iterative numerical methods.
CO2	ESTIMATE solutions for differential equations using numerical techniques.
CO3	DEVELOP solution for engineering applications with numerical integration.
CO4	DESIGN and CREATE a model using a curve fitting and regression analysis.
CO5	APPLY statistical Technique for quantitative data analysis.
CO6	DEMONSTRATE the data, using the concepts of probability and linear algebra.

Department: Mechanical

Year :TE Sem 1 2019 pattern

Course Title: Heat and Mass Transfer Course Outcomes (CO):

Course	Statement
outcome (CO)	At the end of the course, student will be able to
CO1	ANALYZE & APPLY the modes of heat transfer equations for one dimensional
	thermal system.
<u> </u>	DESIGN a thermal system considering fins, thermal insulation and & Transient
02	heat conduction.
<u> </u>	EVALUATE the heat transfer rate in natural and forced convection & validate
005	with experimentation results.
<u> </u>	INTERPRET heat transfer by radiation between objects with simple geometries,
CO4	for black and grey surfaces.
CO5	ABILITY to analyze the rate of mass transfer using Fick's Law of Diffusion and
	understands mass diffusion in different coordinate systems.
CO6	DESIGN & ANALYSIS of heat transfer equipments and investigation of its
	performance.

Department: Mechanical

Year :TE Sem 1 2019 pattern

Course Title: Design of Machine Elements Course Outcomes (CO):

Course	Statement
outcome (CO)	At the end of the course, student will be able to
CO1	DESIGN AND ANALYZE the cotter and knuckle Joints, levers and
	components subjected to eccentric loading.
CO2	DESIGN shafts, keys and couplings under static loading conditions.
CO3	ANALYZE different stresses in power screws and APPLY those in the
	procedure to design screw jack.
CO4	EVALUATE dimensions of machine components under fluctuating loads.
CO5	EVALUATE & INTERPRET the stress developed on the different type of
	welded and threaded joints.
CO6	APPLY the design and development procedure for different types of springs.

Department: Mechanical

Course Title: Mechatronics

Course Outcomes (CO):

Course	Statement
outcome (CO)	At the end of the course, student will be able to
CO1	DEFINE key elements of mechatronics, principle of sensor and its
COI	characteristics.
CO2	UTILIZE concept of signal processing and MAKE use of interfacing systems
	such as ADC, DAC, Digital I/O.
CO3	DETERMINE the transfer function by using block diagram reduction technique.
CO4	EVALUATE Poles and Zero, frequency domain parameter for mathematical
	modeling for mechanical system.
CO5	APPLY the concept of different controller modes to an industrial application.
CO6	DEVELOP the ladder programming for industrial application.

Department: Mechanical

Course Title: Digital Manufacturing Laboratory Course Outcomes (CO):

Course Statement outcome (CO) At the end of the course, student will be able to **DEVELOP** a component using conventional machines, CNC machines and CO1 Additive Manufacturing Techniques. CO2 ANALYZE cutting tool parameters for machining given job. **DEMONSTRATE** simulation of manufacturing process using Digital CO3 Manufacturing Tools. CO4 SELECT and DESIGN jigs and Fixtures for a given component. **DEMONSTRATE** different parameters for CNC retrofitting and reconditioning. CO5

Department: Mechanical

Course Title: Skill Development

Year :TE Sem 1 2019 pattern

Course Outcomes (CO):

Course	Statement
outcome (CO)	At the end of the course, student will be able to
CO1	APPLY& DEMONSTRATE procedure of assembly & disassembly of various
	machines.
CO2	DESIGN & DEVELOP a working/model of machine parts or any new product.
CO3	EVALUATE fault with diagnosis on the machines, machine tools and home
	appliances.
CO4	IDENTIFY & DEMONSTRATE the various activities performed in an
	industry such as maintenance, design of components, material selection.

Year :TE Sem 1 2019 pattern

Year :TE Sem 1

2019 pattern

Department: Mechanical Course Title: Internship/Mini project Course Outcomes (CO):

CO6

Year :TE Sem 1 2019 pattern

Course Statement outcome (CO) At the end of the course, student will be able to ANALYSE the effect of friction in metal forming deep drawing and CO1 IDENTIFICATION of surface defects and their remedies in deep drawing operations **ASSESS** the parameters for special forming operation and SELECT appropriate CO2 special forming operation for particular applications ANALYSE the effect of HAZ on microstructure and mechanical properties of CO3 materials CLASSIFY various solid state welding process and SELECT suitable welding CO4 processes for particular applications CLASSIFY various advanced welding process and SELECT suitable welding CO5

INTERPRET the principles of sustainable manufacturing and its role in

processes for particular applications.

manufacturing industry.

Department: - Mechanical **Course Title: Design of Transmission Systems**

Year : TE Sem 2 2019 Pattern

Course Outcomes (CO):

Course	Statement
outcome (CO)	At the end of the course, student will be able to
CO1	
	APPLY the principle of Spur & Helical gear design for industrial application
	and PREPARE a manufacturing drawing with the concepts of GD&T.
CO2	EXPLAIN and DESIGN Bevel & Worm gear considering design parameters as
	per design standards.
CO3	SELECT&DESIGN Rolling and Sliding Contact Bearings from manufacturer's
	catalogue for a typical application considering suitable design parameters.
CO4	DEFINE and DESIGN various types of Clutches, Brakes, used in automobile.
CO5	APPLY various concept to DESIGN Machine Tool Gear box, for different
	applications
CO6	ELABORATE various modes of operation, degree of hybridization and allied
	terms associated with hybrid electric vehicles.

Department: Mechanical

Year :TE Sem 2 2019 pattern

Course Title: Artificial Intelligence & Machine Learning Course Outcomes (CO):

Course	Statement
outcome (CO)	At the end of the course, student will be able to
CO1	Explain fundamentals of artificial intelligence and machine learning
CO2	Applyfeature extraction and selection techniques for processing data.
CO3	Apply machine learning algorithms for classification and regression
	problems
CO4	Understand steps involved in development of machine learning model
	&Evaluate performance of Machine Learning Model.
CO5	Explain concepts of reinforced and deep learning
CO6	Simulate machine learning model in mechanical engineering problems

Department: Mechanical

Year :TE Sem 2 2019 pattern

Course Title: Computer Aided Engineering Course Outcomes (CO):

Course	Statement
outcome (CO)	At the end of the course, student will be able to
CO1	UNDERSTAND the basic concepts of Computer Aided Engineering (CAE) and
	CHARACTERISTICS of various elements required for analysis.
CO2	NURTURE students about the discretization process and criteria for quality
	mesh.
CO3	UNDERSTAND the approaches of Finite Element Method (FEM) and to find
	displacement and stresses over the body.
CO4	DEVELOP the knowledge and skills needed to effectively evaluate the results
	using Finite Element Analysis (FEA).
CO5	APPLY computational technique to solve complex solid mechanics problems
	and its loading states.
CO6	STUDY the applications of CAE in the various domains of the Mechanical
	Engineering

Department: Mechanical Course Title: Elective II- Composite Materials Course Outcomes (CO):

Year :TE Sem 2 2019 pattern

Course	Statement
outcome (CO)	At the end of the course, student will be able to
CO1	DEFINE & COMPARE composites with traditional materials
<u> </u>	IDENTIFY & ESTIMATE different parameters of the Polymer Matrix
02	Composite
CO3	CATEGORISE and APPLY Metal Matrix Process from possessions landscape.
CO4	DETERMINE volume/weight fraction and strength of Composites.
CO5	SELECT appropriate testing and inspection method for composite materials.
CO6	SELECT composites materials for various applications.

Department: Mechanical

Year :TE Sem 2 2019 pattern

Course Title: Measurement Laboratory Course Outcomes (CO):

Course	Statement
outcome (CO)	At the end of the course, student will be able to
CO1	EVALUATE causes of errors in Vernier calipers, micrometers by performing experiments in standard metrological conditions, noting deviations at actual and by plotting cause and effect diagram, to reduce uncertainty in measurement.
CO2	ANALYZE strain measurement parameters by taking modulus of elasticity in consideration to acknowledge its usage in failure detection and force variations.
CO3	EXAMINE surface Textures, surface finish using equipment's like Talysurf and analyze surface finish requirements of metrological equipment's like gauges, jaws of vernier calipers, micrometers, magnifying glasses of height gauge and more, to optimize surface finish accuracy requirements and cost of measurement.
CO4	MEASURE the dimensional accuracy using Comparator and limit gauges and appraise their usage in actual measurement or comparison with standards set to reduce measurement lead time.
CO5	PERFORM Testing of Flow rate, speed and temperature measurements and their effect on performance in machines and mechanisms like hydraulic or pneumatic trainers, lathe machine etc. to increase repeatability and reproducibility.
CO6	COMPILE the information of opportunities of entrepreneurships/business in various sectors of metrology like calibrations, testing, coordinate and laser metrology etc in an industry visit report.

Department: Mechanical Course Title: Fluid Power & Control Laboratory Course Outcomes (CO):

Year :TE Sem 2 2019 pattern

Course	Statement
outcome (CO)	At the end of the course, student will be able to
CO1	DEFINE working principle of components used in hydraulic and pneumatic systems.
CO2	IDENTIFY & EXPLAIN various applications of hydraulic and pneumatic systems.
CO3	SELECT an appropriate component required for hydraulic and pneumatic systems using manufactures' catalogues. \
CO4	SIMULATE & ANALYSE various hydraulic and pneumatic systems for industrial/mobile applications.
CO5	DESIGN a hydraulic and pneumatic system for the industrial applications.
CO6	DESIGN & DEMNSTRATE various IoT, PLC based controlling system using hydraulics and pneumatics.

Department: Mechanical

Year :TE Sem 2 2019 pattern

Course Title: Internship/Mini project Course Outcomes (CO):

Course	Statement
outcome (CO)	At the end of the course, student will be able to
CO1	DEMONSTRATE professional competence through industry internship.
CO2	APPLY knowledge gained through internships to complete academic activities in a professional manner.
CO3	CHOOSE appropriate technology and tools to solve given problem.
CO4	DEMONSTRATE abilities of a responsible professional and use ethical practices in day to day life.
CO5	DEVELOP network and social circle, and DEVELOPING relationships with industry people.
CO6	ANALYZE various career opportunities and DECIDE career goals.

PES's ModernCollege of Engineering , Pune